我国厨余垃圾处理工程大多采用厌氧工艺,末端产生大量沼渣,堆肥资源化是其利用的重要手段,但目前缺乏沼渣特性和处理效果的研究。
本文针对典型城市厨余垃圾厌氧发酵工程产生的沼渣和堆肥进行了取样调研,研究了沼渣和堆肥的物理组成、生物稳定性、植物毒性、溶解性物质特性,分析了厨余垃圾厌氧沼渣好氧堆肥的必要性。
结果表明:一级沼渣 (即螺旋挤压脱水产生沼渣) 蓬松易堆肥,经20d 好氧堆肥可满足腐熟要求,但杂物含量高达32%,堆肥后必须进行筛分处理,过15mm 筛可显著降低杂物含量至0.5%;二级沼渣(即振动筛分和高速离心脱水产生沼渣)杂物含量不到1%,但因含水率近80%,黏连不透气,堆肥过程需要添加秸秆等调理剂增加透气性。
作者简介
郑苇:现任中城环境天津分公司副总工,博士,高级工程师,先后参与洛碛餐厨垃圾处理厂、合肥小庙有机资源处理中心、太原循环经济产业园控规、原马钢(合肥)地块中部片区污染土壤修复工程等数十个项目咨询和设计。
随着生活垃圾分类政策推行,上海、北京、杭州、宁波、福州、合肥、重庆等城市相继落地厨余垃圾处理设施,该设施主要采用干法厌氧产沼的资源化利用方案,但此类项目会产生大量的消化残余物,工程上一般采用螺旋挤压脱水+振动筛分除砂+高速离心脱水的三级固液分离方式对其进行深度处理,实现固液分离,获得脱水沼渣,沼渣产生量约为干法厌氧进料量的40%~60%。
厌氧沼渣资源化的重要方式是通过堆肥生产有机肥,目前主要针对农作物秸秆、畜禽粪污、餐厨垃圾、市政污泥等有机废弃物的厌氧沼渣堆肥效果进行了研究:禽畜粪便沼渣堆肥应用主要问题在于盐含量高达1%,且重金属Cu、Zn、As超标频率高;餐厨垃圾沼渣堆肥应用主要问题在于盐含量高达2%;市政污泥沼渣堆肥应用主要问题在于As、Cr、Cu、Zn普遍超标。然而,厨余垃圾为生活垃圾分类产物,杂物含量是影响其沼渣堆肥应用的重要影响因素,对此目前缺乏研究。
另外,由于厨余垃圾和农作物秸秆、畜禽粪污、餐厨垃圾、市政污泥等有机固废相比,杂物含量高、杂物种类多,需要对堆肥进行后处理,而对后处理效果尚无相关报道。
因此,本研究针对我国某一典型城市的厨余垃圾处理工程案例进行调研,分析进料、沼渣、堆肥的物理组成特性,明确杂物去除效率,研究堆肥前后植物毒性、生物稳定性、溶解性物质特征,为厨余垃圾消化残余物处理工艺优化提供参数参考。
01材料与方法
1. 案例简介和物料来源
调研的厨余垃圾处理工程案例具体工艺和采样点见图1。采集原生厨余垃圾、一级沼渣、二级沼渣以及堆肥筛分产品(以下简称“堆肥”),并按CJ/T313—2019生活垃圾采样和分析方法规定进行样品采集。
图1 案例工艺和取样点位示意
2. 测定分析方法
TS、VS及物理组分依据CJ/T313—2019中重量法测定。生物稳定性采用四日好氧呼吸速率指数(AT4)表征,并参照德国2001年《Ordinance on Environmentally Compatible Storage of Waste from Human Settlements and on Biological Waste-Treatment Facilities》法令规定测定。
植物毒性采用种子发芽率(GI)表征,并依据CJJ52—2014生活垃圾堆肥处理技术规范规定测定,浸提液按照固液比1:10(样品干基质量/蒸馏水体积)制取,选用萝卜种子测定;同步测定浸提液pH、溶解性氨氮(NH4+-N)、硝态氮(NO3--N)、COD和BOD。pH采用玻璃电极法测定,NH4+-N和NO3--N采用HACH试剂比色法测定,COD、BOD分别采用HACHCOD测定仪、自动测定仪(OxiTop IS 12,WTW,Germany)测定。
3. 数据处理与分析方法
数据分析及绘图分别利用Excel和OriginPro软件平台完成。
02结果与讨论
1. 物理组成特征
原生厨余垃圾、一级沼渣、二级沼渣和堆肥的物理组成特征如表1所示。我国厨余垃圾分类处于起步阶段,除上海等极少数城市正确投放率高,杂物含量仅为10%,其余大部分城市目前分类收集的厨余垃圾杂物含量仍然较高,一般约25%,如孙广雨报道的武汉厨余垃圾含杂率约25.8%,与本研究调研厨余垃圾含杂率27.5%相近。
表1 物料物理组成特征
注:“其他”为分类后不可辨认物。
另外,根据案例统计数据,一级沼渣获得量约为消化残余物总量的25%,二级沼渣获得量约为消化残余物总量的10%,则消化残余物TS和VS分别约为13.3%和54.1%,其他、木竹类、橡塑类、玻璃、石头、贝骨占比分别为72.9%、6.5%、3.0%、3.4%、0.9%、13.1%。根据各类物料比例可知,经过预处理,橡塑类、金属类、纺织物被大量去除,但硬性易碎物料(玻璃、石头、贝骨)和长纤维状物料(木竹)经过预处理和厌氧发酵反而有所富集,残余物中干基比例增加。
同时,消化残余物经过三级筛分,一级沼渣中杂物含量较高,约32%。二级沼渣中杂物含量较低,<1%。但二级沼渣的VS较低(较一级沼渣低16%),含水率高(较一级沼渣高23.5%),整体性状黏稠不透气,若用二级沼渣堆肥需要添加秸秆等调理剂,调整C/N为20~30,同时增加其透气性,降低含水率。
一级沼渣经过堆肥和筛分(15mm)处理后,含水率和杂物含量(0.5%)明显降低,基本满足GB/T33891—2017绿化用有机基质中开放绿地和林地用有机基质含水率≤40%、有机质≥25%、塑料≤0.5%、玻璃和金属≤2%的要求。因此,一级沼渣好氧堆肥降低含水率后筛分效果良好,但也需注意获得的堆肥产品中仍然存在玻璃、石头等尖锐物,需充分考虑其应用过程中人员接触问题,防止尖锐物对接触人员造成物理性损伤。
2. 生物稳定性
生物稳定性主要考量物料的腐熟程度,避免土地施用过程降解发臭和产生渗滤液的不良环境风险,因此原始厨余垃圾不进行生物稳定性实验。一级沼渣、二级沼渣、堆肥的AT4(以干基计)分别为(58.7±0.9)、(61.8±2.6)、(19.8±1.5)mg/g。欧盟、奥地利和德国、美国的AT4(以干基计)分别为≤10、≤5、≤35mg/g。
应进一步好氧堆肥处理,提高其生物稳定性。一级沼渣经过20d的好氧堆肥,AT4显著降低,满足美国关于AT4(以干基计)≤35mg/g的要求。与金树权等和白玲等研究沼渣堆肥时间20d即可完成腐熟结论一致。
3. 植物毒性
物料植物毒性主要考量施用于土壤后对植物的影响,因此原始厨余垃圾不进行植物毒性实验。一级沼渣、二级沼渣、堆肥的种子发芽实验结果如图2所示。
注:陈子璇于2021-03-12在天津拍摄。
图2 种子发芽实验结果示意
可见,一级沼渣和二级沼渣皆有较大的植物毒性,GI基本为0。文献中沼渣GI研究结果一般为55%~75%。这主要是因为文献中GI测量的浸提液采用鲜质量比1∶10配制,而本研究根据CJJ52—2014要求,GI测量的浸提液按干基固液比1∶10制取,使得浸提液浓度较其他研究高,从而GI降低。这与宋彩红等采用干基比研究沼渣的GI结果相似(26.8%)。
另外厨余垃圾采用干法厌氧消化,因其浓度高,降解时间理论上应长于湿法厌氧消化,但由于目前干法厌氧装置基本依托于进口,投资远高于湿法厌氧,为节省投资,目前干法厌氧停留时间反而较湿法厌氧短,导致出料进一步不稳定,植物毒性高。
经过20d好氧堆肥,GI显著提高至91.1%±6.3%,满足GB/T33891—2017中绿地林地用有机基质GI≥65%和NY/T525—2021有机肥料中GI≥70%的要求。
4. 溶解性物质特征
一级沼渣、二级沼渣、堆肥中pH、NH4+-N、NO3--N、COD、BOD含量见表2。
表2 溶解性物质特性
(1)pH
一级沼渣、二级沼渣、堆肥按干基比1∶10获得浸提液的pH。由表2可知,一级沼渣、二级沼渣和堆肥溶解性物质的pH均在8.0~8.5,经过堆肥,溶解性物质的pH没有显著变化,堆肥产品符合GB/T33891—2017中绿地林地用有机基质pH(4.0~9.5)和NY/T525—2021中pH(5.5~8.5)的要求。
(2)NH4+-N和NO3--N
由表2可知,二级沼渣溶解性NH4+-N含量最高,为一级沼渣的2.3倍;二级沼渣溶解性NO3--N含量与一级沼渣相近,约为一级沼渣的1.2倍,因此二级沼渣总氮含量较一级沼渣高,可能具有更高的营养元素含量,更具有机肥料应用前景。
一级沼渣经过好氧堆肥,约0.6%的NH4+-N好氧转化为NO3--N,使NO3--N增加近1倍,大部分NH4+-N经挥发损失,转化和挥发使基质的溶解性NH4+-N急剧减少,较堆肥之初减少了89.6%。为减少堆肥过程氮素损失,可考虑添加鸟粪石等调理剂,实现固氮效果,提高堆肥产品品质。
(3)COD和BOD
由表2可知,一级沼渣和二级沼渣溶解性COD相近,皆在4000~5000mg/L,二级沼渣比一级沼渣COD略高约10%。一级沼渣、二级沼渣溶解性有机物可生化性高,一级沼渣BOD/COD为0.42,二级沼渣BOD/COD为0.69,如果直接施用于土壤中,会产生高可生化性渗滤液,存在污染土壤和地下水的风险。
一级沼渣好氧堆肥后,溶解性COD和BOD分别显著降低35%和82%,可生化性明显下降为0.12,从侧面反映了堆肥产物腐熟度提高,土壤施用安全性增强。
03结论
目前我国厨余垃圾厌氧消化残余物常采用脱水+堆肥+筛分工艺处理,产品基本满足有机肥料和绿化用有机基质要求。一级沼渣经20d好氧堆肥,可增强生物稳定性,AT4降至20左右;增加腐熟程度,溶解性有机物BOD/COD降至0.12;降低植物毒性,GI提高至85%以上。
但需注意,一级沼渣堆肥后必须筛分处理,否则杂物含量将严重超标。二级沼渣杂物含量低,氮含量高,比一级沼渣更适合堆肥后施用于土壤,但堆肥过程需要添加秸秆等作为调理剂。
本文首发于《环境卫生工程》,更新后刊登于《CE碳科技》。
作者:中城环境 郑苇、康建邨、马换梅、高波、李波、陈子璇